Cognitive effort drives workspace configuration of human brain functional networks.
نویسندگان
چکیده
Effortful cognitive performance is theoretically expected to depend on the formation of a global neuronal workspace. We tested specific predictions of workspace theory, using graph theoretical measures of network topology and physical distance of synchronization, in magnetoencephalographic data recorded from healthy adult volunteers (N = 13) during performance of a working memory task at several levels of difficulty. We found that greater cognitive effort caused emergence of a more globally efficient, less clustered, and less modular network configuration, with more long-distance synchronization between brain regions. This pattern of task-related workspace configuration was more salient in the β-band (16-32 Hz) and γ-band (32-63 Hz) networks, compared with both lower (α-band; 8-16 Hz) and higher (high γ-band; 63-125 Hz) frequency intervals. Workspace configuration of β-band networks was also greater in faster performing participants (with correct response latency less than the sample median) compared with slower performing participants. Processes of workspace formation and relaxation in relation to time-varying demands for cognitive effort could be visualized occurring in the course of task trials lasting <2 s. These experimental results provide support for workspace theory in terms of complex network metrics and directly demonstrate how cognitive effort breaks modularity to make human brain functional networks transiently adopt a more efficient but less economical configuration.
منابع مشابه
Dynamic reorganization of brain functional networks during cognition
How does cognition emerge from neural dynamics? The dominant hypothesis states that interactions among distributed brain regions through phase synchronization give basis for cognitive processing. Such phase-synchronized networks are transient and dynamic, established on the timescale of milliseconds in order to perform specific cognitive operations. But unlike resting-state networks, the comple...
متن کاملThe most relevant human brain regions for functional connectivity: Evidence for a dynamical workspace of binding nodes from whole-brain computational modelling
In order to promote survival through flexible cognition and goal-directed behaviour, the brain has to optimize segregation and integration of information into coherent, distributed dynamical states. Certain organizational features of the brain have been proposed to be essential to facilitate cognitive flexibility, especially hub regions in the so-called rich club which show dense interconnectiv...
متن کاملCognitive Effort and Schizophrenia Modulate Large-Scale Functional Brain Connectivity.
Schizophrenia (SZ) is characterized by cognitive dysfunction and disorganized thought, in addition to hallucinations and delusions, and is regarded a disorder of brain connectivity. Recent efforts have been made to characterize the underlying brain network organization and interactions. However, to which degree connectivity alterations in SZ vary across different levels of cognitive effort is u...
متن کاملNeuropsychological and Neuropsychiatric Deficits Following Traumatic Brain Injury: Common Patterns and Neuropathological Mechanisms
Traumatic Brain Injury (TBI) in all degrees of injury severity mainly induces deviant cognitive, emotional and behavioral alterations that lead to their respective disorders. This brief overview strives to define the variables that determine the risk of occurrence of these disorders and to describe the common patterns of these disorders and their relevant neuropathogenetic mechanism(s). In addi...
متن کاملSelective deficits in human audition: evidence from lesion studies
The human auditory cortex is the gateway to the most powerful and complex communication systems and yet relatively little is known about its functional organization as compared to the visual system. Several lines of evidence, predominantly from recent studies, indicate that sound recognition and sound localization are processed in two at least partially independent networks. Evidence from human...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 31 22 شماره
صفحات -
تاریخ انتشار 2011